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ABSTRACT

A generalized bilateral finline with mounting
grooves and finite conductor thickness is analyzed by
full-wave mode—matching method. The final nonstandard
eigenvalue equation is derived from unknown coefficients
in two slot regions. Both relative and absolute convergence
analyses of complex modes are performed. The field
patterns along the metallized strips are investigated for
relative convergence studies. Once the optimal ratios of
the numbers of expansion terms among different regions
are decided, the absolute convergence study is initiated to
obtain the minimal number of total modal expansion terms
to save computer time. The validity of this approach is
confirmed by checking the available complex mode data.
Finally, the dispersion characteristics of fundamental,
higher order, evanescent, and complex modes are presented
for an asymmetric bilateral finline.

INTRODUCTION

Since the introduction of finline in 1972 [IJ, it has
become one important class of transmission lines in
MMIC. Practical implementations of finlines often
encounter  discontinuity problems. Many rigorous
analytical techniques have been developed, e.g. the
spectral domain analysis [2], the transverse resonance
technique [3], and the modal expansion concept (or the
generalized scattering matrix) [4—6]. Papers in [2] to [6]
dealt with ideal finlines either consisting of infinitely thin
metallizations or without mounting grooves. As pointed
out in [7], the influence of metallization thickness and

mounting grooves can be pronounced - at higher-

millimeter—wave frequencies. The only method reported to
solve the generalized finline (Fig.1) with mounting grooves
and metallization thickness is the generalized transverse
resonance method [8,9]. This method requires an identical
number of eigenfunction expansions in each region. It is
plausible to speculate that relative convergence problem
may occur by using this method. The existence of complex
modes has not been reported in such generalized finlines.
Reference [4] concluded that severe errors could occur even
if only one pair of complex modes are neglected when
analyzing the finline step discontinuity problem.

It is therefore important to analyze the generalized
finline considering the influence of finite metallization
thickness and mounting grooves on the dispersion
characteristics of the fundamental, higher order,
evanescent, and complex modes for accurate .analysis of a
practical finline discontinuity problem.

This paper analyzes the generalized finline
configuration by the mode—matching method and considers
the associated relative convergence problem [10]. The
relative ‘convergence study discusses various ratios of
numbers of eigenfunction expansions in different regions.
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A systematic procedure is presented to obtain the
optimal choice of the ratios before proceeding to absolute
convergence study for modal field solutions. In particular,
both relative and absolute convergence studies are reported
for complex modes.

METHOD OF ANALYSIS :
MODE-MATCHING METHOD

The generalized finline shown in Fig.1 with each
region arbitrarily extending in both x and y directions is
analyzed.

Assuming the factor ejwt—ﬂ, where y=0+j8, the
rigorous full-wave hybrid TE-to—z and TM-to—=z
formulation can be expressed as
Region—1 :
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g. The generalized finline with grooves and finite
metallization thickness.
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and Nj is the number of eigenfunction expansion terms in

region—j. (X(Z”’ y(el)) and £§)’ represent the coordinates of
the lower—left corner and the length in y-direction of
region—j, respectively.

Eq.(1a) to Eq.(lc) indicate that sixteen sets of
coefficients exist. There are sixteen interface conditions to
be satisfied at x=h;, (hy+t4), (hy+t;4+d), and
(hy+t1+d+t). Field coefficients in regions other than the
slots can be expressed in terms of the eight sets’of
coefficients in the slots. In this way, the final matrix size is
minimized. When all the interface boundary conditions are
satisfied, the nonstandard eigenvalue equation looks like
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RESULTS

Relative Convergence Study

Fig.2 plots the aperture field E, evaluated at
x=hy+t; and 0<y<b. Fig.2—(a) to Fig.Z—(dv) correspond to
different test conditions. Since the ratio of wy to ws is
nearly three, the ratio of Ng to Ny is kept three and their
numbers fixed, i.e. N9=30 and N4=10. This assumption is
based on the experience gained by [6] and will be justified
later. It is clear that Fig.2—(a) and Fig.2—(b) have fairly
poor field matchings. When Fig.2—(c) and Fig.2—(d) are

overlaid, the aperture fields evaluated at x=(hy+ty)"
make no distinction. The only difference is the fields

evaluated at x=(h;+t;) . The aperture field Ey near the

corners of the metallic strips, i.e. y=slim, should have
2
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p70476 gingularity [12], p is the distance from each corner.
Fig.2—(d) has smaller slopes at the edges than Fig.2—(c). It
is hard to define the slopes since the modal field solutions
converge in the mean by the modal expansion technique.
However, Fig.2—(c) represents the best choice under the
test conditions in terms of field matching and slopes at
edge singularities. Notice that the ratio of Ny to Ny is
nearly the same as that of b to wy.

To justify the assumption of Na to Ny ratio in
Fig.2, Fig.3 plots the aperture field Ey at the slot in
region—2. Keeping the ratio of Ny to NYQ constant while
varying Ny, the results indicate that aperture field Ey is
nearly the same away from the edges (Fig.3—(a)) and
differs significantly when approaching the edges
1(Fig.3—(b)). As Ny increases from 2 to 10, the aperture
ield plots start to converge into one line, this justifies the
assumption that the ratio of Ny to N4 be equal to that of
w1 to wa.

Since the propagation constant is the most
important parameter for the present study, Fig.4—(a) and
(b) show the results which investigates the relative
convergence of the normalized propagation constant of one
of the complex modes. Both plots indicate that a/ky and
B/ko converge sharply at Ny=2 and slowly near N4=10.

It is justifiable to conclude that the ratios of the
numbers of modal expansion terms between various regions
should be approximately the same as those of the
corresponding aspect ratios at various regions.

Absolute Convergence Study

The relative convergence study requires that
No/N4~3 and Ny/Ng¥4.6. Fig.5—(a) and (b) are the results
of the absolute convergence study for one of the complex
modes using Np as abscissa. For both the real and the
imaginary parts of the complex propagation constant, the
solid dotted symbols which abide the rule for relative
convergence, converge quickly as Ny increases. Abiding the
rule for relative convergence, the solution for the complex
modes is still fairly close to the converged solution when
only a few number of terms are used.

Dispersion characteristics of fundamental, higher order,
evanescent, and complex modes in a generalized bilateral

finline with mounting grooves and finite metallization
thickness.

The validity of the above convergence studies and
formulations of the mode—matching method is checked
against the existing data [11] for complex modes in a
symmetric unilateral finline which is the limiting case of
the generalized finline. Fig.6 shows that little discrepancies
occur around 29 GHz and 10 GHz. Since all the structural
parameters are the same except that a metallization
thickness of one mil is assumed here, the discrepancies are
perhaps due to the effect of finite conductor thickness.

Finally, the normalized propagation constant versus
frequency for an asymmetric bilateral finline with
mounting grooves and finite metallization thickness is
presented in Fig.7. Notice that the relative dielectric
constant is ten, much lower than what reference [11] had
used. A few regions of complex modes exist in full W—band
(75—110GHz). The third and fourth higher order modes
have split into complex modes already.

CONCLUSION

The existence of complex modes in generalized
bilateral finline with mounting grooves and finite



metallization  thickness has been reported. In the
particular bilateral finline analyzed, the higher order
modes just below cutoff may degenerate into complex
modes. The propagating—to—evanescent—to—complex or
evanescent—to—complex—to—evanescent mode conversions
occur throughout full W—band.

The ~presented convergence studies provide a
guideline to determine the numbers of modal expansion
terms used in the millimeter—wave CAD program.
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Fig.2 Relative convergence studies of the aperture field
Ey evaluated at x=h;+t and 0<y<b. Structural

parameters : =70 GHz, €{3=12, e&tV= (2=

el =¢(8=1, a=2.032 mm, b=127 mm,
d=32%b, t;=te=1 mil, wi=64%b, we=22%D,
Sl=Sz=b/2, dm=0.85 mm, g1=g2=0

2) N;=N3=Ns=16 Ny=30 N4=10
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Fig.3 Relative convergence studies of aperture field Ey
evaluated at x=h;+t; and (si— %)Sys(sﬁ %)

Structural parameters : same as Fig.2
(a) Ny=N3=Nz=46 No=30 N;=2,4,638,10
(b) Expanded view {a) near y=s1+ %
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Fig.4 Relative convergence studies of a normalized
propagation constant of complex modes. Test
condition : same as in Fig.3
(a) B/ko versus Ny (b) a/ko versus Ny
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Absolute convergence studies of the normalized
propagation constant of one of the complex modes
(a) B/ko versus Ny (b) a/ko versus Ny
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Validity check of the normalized propagation
constant of complex modes of a symmetric
unilateral finline versus frequency.

3

¥ T T 1
100 110 120 130 14

N

f GHz
Normalized propagation constant versus frequency
for an asymmetric bilateral finline. a=2.54mm,
b=1.27mm,e{3) =10, el =¢l2) =¥ =¢{8) =],
d=30%b, ti=to= 0.7 mil, w;=30%b, wa=45%b,
$1=65%b,89= 57.5%b,dn=42.5%2, g1=g»=2.5 mils.



