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ABSTRACT

A generalized bilateral finline with mounting
grooves and finite conductor thickness is analyzed by
full–wave mode-matching method. The final nonstandard
eigenvalue equation is derived from unknown coefficients
in two slot regions. Both relative and absolute convergence

analyses of complex modes are performed. The field
patterns along the metallized strips are investigated for
relative conver ence studies. Once the optimal ratios of

F’the numbers o expansion terms among different regions
are decided, the absolute convergence study is initiated to
obtain the minimal number of total modal expansion terms
to save computer time. The validity of this approach is
confirmed by checking the available complex mode data.
Finally, the dispersion characteristics of fundamental,
higher order, evanescent, and complex modes are presented
for an asymmetric bilateral finline.

INTRODUCTION

Since the introduction of finline in 1972 [1 ? it has
/become one important class of transmission mes in

MMIC. Practical implementations of finlines often
encounter discontinuity y problems. Many rigorous
analytical techniques have been developed, e.g. the
spectral domain analysis [2], the transverse resonance
technique [3], and the modal expansion concept (or the
generalized scattering matrix) [4-0]. Papers in [2] to [6]
dealt with ideal finlines either consisting of infinitely thin
metallizations or without mounting grooves. As pointed
out in [7], the influence of met allization t hlckness and
mounting grooves can be pronounced at higher
millimeter-wave frequencies. The only met hod reported to
solve the generalized finline (Fig. 1) with mounting grooves
and metallization thickness is the generalized transverse
resonance method [8,9]. Thk method requires an identical
number of eigenfunction expansions in each region. It is
plausible to speculate that relative convergence problem
may occur by using this method. The existence of complex
modes has not been reported in such generalized finlines.
Reference [4] concluded that severe errors could occur even
if only one pair of complex modes are neglected when
analyzing the finline step discontinuity problem.

It is therefore important to analyze the generalized
finline considering the influence of finite mctallization
thickness and mounting grooves on the dispersion
characteristics of the fundamental, higher order,

evanescent, and complex modes for accurate analysis of a
practical fmline discontinuity problem.

This paper analyzes the generalized finline
configuration by the mod~matching method and considers
the associated relative convergence problem [10]. The
relative ‘convergence study discusses various ratios of
numbers of eigenfunct ion expansions in different regions.
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A systematic procedure is presented to obtain the
optimal choice of the ratios before proceeding to absolute
convergence study for modal field s~lutions. In particular,
both relative and absolute convergence studies are reported
for complex modes.

METHOD OF ANAILYSIS :
MODE-MATCHING METHOD

The generalized finline shown in Fig.1 with each
region arbitrarily extending in both x and y directions is
analyzed.

Assuming the factor ejd-Tz, where ~=a+j@, the
rigorous full–wave hybrid TE-to-z and TM–tti
formulation can be expressed as

Region-1 :

+(1) = e-vn~~ AmfsAl) (y)sin(kx(i’ ) x)

U(1) = e–~n~~ B.fc~l) (y)cos(kx/,l) x) Eq.(la)

Region–j, j= 2, 3, 4:

~(j) = e–%n~~~j)
(Y){F~~j) sin[kxij) (x-x~j’ )]

+GeLj ) cOs[bQ ) (x–x~j ) )]
}

{

W(j) G e–~ YjfcQ) (Y) l?h~j) sin[kxij ) (X–Xf) )]

~=o

+Ghkj) COS[kX!j) (X–Xf) )]
}
Eq.(lb)
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Region–5 :

$’s) = e-~zn~~ C~fs&s) (y)sin[kxi’) (a-x)]

U(5) = e–wn~~ DDfc~5) (y)cos[kx~’) (a–x)] Eq.(lc)

where

and Nj is the number of eigenfunction expansion terms in

region–j. (xY ), y~ ) ) and @ ) represent the coordinates of

the lower–left corner and the length in y-direction of
region–j, respect ively.

Eq.(la) to Eq. (lc) indicate that sixteen sets of
coefficients exist. There are sixteen interface conditions to
be satisfied at x=hl, (hl+tl), (hl+t~+d), and
(hl+tl+d+ta). Field coefficients in regions other than the
slots can be expressed in terms of the eight sets oof
coefficients in the slots. In this way, the final matrix size is
minimized. When all the interface boundary conditions are
satisfied, the nonstandard eigenvalue equation looks like

[v,, ] [v,, ]
——— ———

[v,, ] [v,,]
.—— ———

[vS, ] [v~, ]
.—— ———

[V4, ] [v,,]

[V,3]
———

[v,,]
———

[vS,]
———

[v,,]

[V,4]

[v,,]
———

[v,,]
———

[V44]

=0

Eq.(2)

RESULTS

Relative Convergence Study

Fig.2 plots the aperture field E evaluated at

x=hl+tl and O<y<b. Fig.2–(a) to Fig.2—(~) correspond to

different test conditions. Since the rat io of WI to W2 is
nearly three, the ratio of N2 to N4 k kept three and their

numbers fixed, i.e. N2=30 and N4=10. Thk assumption k

based on the experience gained by [6] and will be justified
later. It is clear that Fig.2–(a) and Fig.2–(b) have fairly

poor field matchings. When Fig.2–(c) and Fig.2–(d) are

overlaid, the aperture fields evaluated at x=(hl+tl)+
make no distinction. The only difference is the fields

evaluated at x=(hl+tl)–. The aperture field EY near the

corners of the metallic strips, i.e. y=si+~, should have

P‘0”476 singularity [12], p is the distance from each corner.
Fig.2–(d) has smaller slopes at the edges than Fig.2–(c). It
is hard to define the slopes since the modal field solutions
converge in the mean by the modal expansion technique.
However, Fig.2–(c) represents the best choice under the
test conditions in terms of field matching and slopes at
edge singularities. Not ice that the ratio of N1 to N2 is
nearly the same as that of b to WI.

To justify the assumption of N2 to N4 ratio in
Fig.2, Fig.3 plots the aperture field E at the slot in
region–2. Keeping the ratio of N1 to fi constant while
varying N4, the results indicate that aperture field Ey is
nearly the same away ~ho; the edges (Fig.3–(a)) and

approaching the edges
As N4 increases from 2 to 10, the aperture

i!~l~jr~~t~nverge into one line, this justifies the

assumption that the ratio of N2 to N4 be equal to that of
W1 to W2.

Since the propagation constant is the most
important parameter for the present study, Fig.4–(a) and
(b) show the results which investigates the relative
convergence of the normalized propagation constant of one
of the complex modes. Both plots indicate that a/k. and
/3/k. converge sharply at N1=2 and slowly nem N4=10.

It is justifiable to conclude that the ratios of the
numbers of modal expansion terms between various regions
should be approximately the same as those of the
corresponding aspect ratios at various regions.

Absolute Conver~ence Studv

The relative convergence study requires that
Ny/N&3 and N1/N#4.6. Fig.5–(a) and (b) are the results
of the absolute convergence study for one of the complex
modes using N1 as abscissa. For both the real and the
imaginary parts of the complex propagation constant, the
solid dotted symbols which abide the rule for relative
convergence, converge quickly as NI increases. Abiding the
rule for relative convergence, the solution for the complex
modes is still fairly close to the converged solution when
only a few number of terms are used.

Diswrsion characteristics of fundamental, hl~her order,
evanescent, and comrdex modes in a ~eneralized bilateral
finline with mountin~ mooves and finite metallizat ion
thickness.

The validity of the above convergence studies and
formulations of the mode-matching method is checked

11
against the existing data [11 for complex modes in a
symmetric unilateral finline w ich is the limiting case of
the generalized fmline. Fig.6 shows that little discrepancies
occur around 29 GHz and 10 GHz. Since all the structural
parameters are the same except that a metallization
thickness of one mil is assumed here, the discrepancies are
perhaps due to the effect of finite conductor thickness.

Finally, the normalized propagation constant versus
frequency for an asymmetric bilateral finline with
mounting grooves and finite metallization thickness is
presented in Fig.7. Notice that the relative dielectric
constant is ten? much lower than what reference [1 I] had
used. A few regions of complex modes exist in full W–band
(75–11OGHZ). The third and fourth higher order modes
have split into complex modes already. -

CONCLUSION

The existence of complex modes in

bilateral finline with mounting grooves
generalized
and finite
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metallization thickness has been reported. In the
particular bilateral finline analyzed, the higher order
modes just below cutoff may degenerate into complex
modes. The propagat ing—t~vanescent—t o-complex or
evanescent-to-complex-to~vanescent mode conversions
occur throughout full W–band.

The presented convergence studies provide a
guideline to determine the numbers of modal expansion
terms used in the millimeter–wave CAD program.
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F&2 Relative convergence studies of the aperture field
EY evaluated at x=hl+tl and O<y<b. Structural

parameters : f=70 GHz, c!3) =12, t~l) = c!z) =

~\4)=~\5)=l, a=2.032 mm, b=l.27 mm,
d=32%b, tl=tz=l roil, wl=64%b, wz=22%b,
sl=sz=b/2, dm=O.85 mm, gl=gz=O

I

a N,= Ns=Ns=16 N.z=30 N1=1O

1b Nl=N3=N5=30 NZ=30 N4=1O
C) NI=N3=N5=46 NZ=30 N4=1O
d) N1=N3=N5=60 NZ=30 N4=1O
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EifL3 Relative convergence studies of aperture field Ey

evaluated at x=hl+tl and (sI– ~)< Y<(si+ ~).

Structural parameters : same as Fig.2
(a) NI=N3=N5=46 N2=30 Nz=2,4,6,8,1O

(b) Expanded view (a) near y=sI+ ~
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F&Q Relative convergence studies of a normalized
propagation constant of complex modes. Test
condition : same as in Fig.3
(a) ,8/kO versus N4 (b) ojk~ versus N4
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Absolute convergence studies of the normalized
propagation constant of one of the complex modes
(a) D/kO versus NI (b) a/kO versus NI
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F&Q Validity check of the normalized propagation
constant of complex modes of a symmetric
unilateral finline versus frequency.
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FiJ# Normalized propagation constant versus frequency
for an asymmetric bilateral finline. a=2.54mm,

b=l.27mm,e!s) =10, ~\ I)=6\2) =c\4)=c:5)=l,

d=30%b, tl=t2= 0.7 roil, w1=30%b, wz=45%b,
s1=65%b,sg= 57.5% b,dm=42.5%a, g1=g2=2.5 roils.
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